Zwei weitere Oxometallate zum $Ba_5Mn_4Ln_8O_{21}$ -Typ: $Ba_5Mn_4Sm_8O_{21}$ und $Ba_5Mn_4Ho_8O_{21}$

E. Klüver, E. Peters und Hk. Müller-Buschbaum

Kiel Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstraße 40-60, W-2300 Kiel (Deutschland)

(Eingegangen am 25. April 1992)

Abstract

The new oxometallates (I) $Ba_5Mn_4Sm_8O_{21}$ and (II) $Ba_5Mn_4Ho_8O_{21}$ were prepared by CO_2 laser high temperature reactions under reducing conditions and investigated by X-ray single-crystal methods. These compounds crystallize with tetragonal symmetry, space group C_{4h}^{5} -I4/m; (I) a = 14.0911 Å; c = 5.8329 Å; (II) a = 13.8507 Å, c = 5.7452 Å; Z = 2. There exists a remarkable relationship with oxides of the formula BaMLn₂O₅. The similarities and differences with respect to the polyhedra around Ln^{3+} and the two point positions of Ba^{2+} are discussed.

Zusammenfassung

Die Oxometallate (I) Ba₅Mn₄Sm₈O₂₁ und (II) Ba₅Mn₄Ho₈O₂₁ wurden durch CO₂-Laser-Hochtemperaturtechnik in reduzierender Atmosphäre erhalten und röntgenographisch untersucht. Sie kristallisieren tetragonal in der Raumgruppe C_{4h}^{5} -I4/m mit (I) a = 14,0911 Å, c = 5,8329 Å und (II) a = 13,8507 Å, c = 5,7452 Å; Z = 2. Es gibt eine bemerkenswerte kristallchemische Verwandtschaft zu Verbindungen der Zusammensetzung BaMLn₂O₅. Die Ähnlichkeiten und Unterschiede werden in Bezug auf die Polyeder um Ln³⁺ und um die zwei Ba²⁺-Punktlagen diskutiert.

1. Einleitung

Die kürzlich beschriebene neue Kristallstruktur von Ba₅Mn₄Nd₈O₂₁ [1], erwies sich als isotyp mit der unabhängig davon aufgeklärten Phase R₂Ba_{1.25}NiO_{5.25} (R = Tm, Yb, Lu) [2]. Dies war insofern überraschend, als bisher angenommen wurde, daß nur die großen Lanthanoidionen den Ba₅M₄Ln₈O₂₁-Typ zu bilden vermögen. Die Beobachtung, daß unter praktisch gleichen Präparationsbedingungen eine Verbindung der Formel BaMnDy₂O₅ erhalten worden war [3], warf die Frage auf, ob die zu erwartenden Kristallstrukturen in erster Linie von der Größe der eingesetzten Lanthanoidionen abhängen. Von besonderem Interesse sind hier die kleineren Ln³⁺-Ionen, insbesondere im Vergleich mit den schon länger bekannten Verbindungen des Typs BaMLn₂O₅ [4–14].

Der folgende Beitrag befaßt sich mit dieser Fragestellung anhand der neu dargestellten Stoffe $Ba_5Mn_4Sm_8O_{21}$ und $Ba_5Mn_4Ho_8O_{21}$.

2. Darstellung von (I) $Ba_5Mn_4Sm_8O_{21}$ - und (II) $Ba_5Mn_4Ho_8O_{21}$ -Einkristallen

Zur Darstellung von (I) wurden BaCO₃ (98,5%, Fa. Merck), MnCO₃ (p.a., Riedel de Haën) und Sm₂O₃ (>99,9%, Auer Rémy) im Verhältnis 1,25:1:1 innig vermengt, zu Tabletten von 1 cm Durchmesser verpreßt und mit CO₂-Laserenergie vorsichtig bis zum Schmelzpunkt erhitzt. Um das Mangan dabei auf der zweiwertigen Stufe zu halten, war es nötig, die Reaktion in einer Wasserstoffatmosphäre durchzuführen. Bei der Darstellung von (II) wurde von BaO (>98%, F. Fluka) und MnO ausgegangen, das durch thermischen Abbau von MnCO₃ im Vakuum frisch hergestellt worden ward. Die Oxide BaO und MnO wurden mit Ho_2O_3 (>99,9%, Auer Rémy) im Verhältnis 1,20:1,15:1 miteinander verrieben und unter gleichen Bedingungen in einem Stickstoff-Wasserstoffgemisch (1:1) aufgeschmolzen. Unter dem Mikroskop ließen sich aus dem erstarrten Präparat braune, kleine stäbchenförmige Kristalle isolieren, die mit Hilfe der energiedispersiven Röntgenfluoreszenzspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) untersucht wurden. Mit standardfreier Meßtechnik ergab sich ein Verhältnis der Metalle Ba:Mn:Sm (bzw. Ho) von 5:4:8.

3. Strukturaufklärung von (I) $Ba_5Mn_4Sm_8O_{21}$ und (II) $Ba_5Mn_4Ho_8O_{21}$

Mit Film- und Vierkreisdiffraktometermethoden wurden die kristallographischen Daten von (I) und (II) bestimmt. Sie sind in Tabelle 1 gemeinsam mit den Meßbedingungen aufgeführt. Die Auslöschungsbedingungen führten zu den Raumgruppen C_{4h}^5 –I4/m, C_4^5 –I4 und S_4^2 –I $\overline{4}$. Analog zum Ba₅Mn₄Nd₈O₂₁-Typ erfolgte die Lösung der Kristallstrukturen in der höchstsymmetrischen Raumgruppe C_{4h}^5 –I4/m mit dem Programm SHELX-76 [15]. Trotz relativ kleiner Einkristalle war es bei der Verfeinerung der Parameter von Substanz (II) erforderlich, mit absorptionskorrigierten Daten zu rechnen (vergl. Tabelle 1). Die abschließenden Parameter sind in Tabelle 2 angegeben. Mit diesen Werten berechnen sich die wichtigsten Metall-Sauerstoff-Abstände in Tabelle 3.

4. Diskussion der Versuchsergebnisse

Die Röntgenstrukturanalysen zeigen, daß Ba_5Mn_4 - Sm_8O_{21} und $Ba_5Mn_4Ho_8O_{21}$ in kürzlich beschriebenen $Ba_5Mn_4Ln_8O_{21}$ -Typ [1] kristallisieren, der durch geringfügige Änderungen der chemischen Zusammensetzung aus der Substanzklasse $BaMLn_2O_5$ hervorgeht. Ein relativ kleiner Überschuß an BaO ($Ba_{1,25}MLn_2O_{5,25}$) führt zu tiefgreifenden Veränderungen im Aufbau, jedoch unter Beibehalt charakteristischer Strukturelemente von Oxometallaten der Formel $BaMLn_2O_5$. Dieser Sachverhalt soll hier an bestimmten Details erläutert werden.

Sowohl im BaNiLn₂O₅- [5-7], BaCuLn₂O₅- [1, 4, 5, 7, 9], BaPtLn₂O₅- [10, 11] und BaZnLn₂O₅-Typ [8, 12, 13] als auch in Ba₅Mn₄Sm₈O₂₁ und Ba₅Mn₄Ho₈O₂₁ sind die Ln³⁺-Ionen generell trigonal prismatisch koordiniert. Die Unterschiede liegen allein in deren kristallchemischer Verknüpfung und unterschiedlicher Überkappung der Prismen-Rechteckflächen. Abbildung 1 zeigt, daß in Ba₅Mn₄Sm₈O₂₁ und Ba₅Mn₄Ho₈O₂₁ jeweils vier dieser Ln(2)O₇-Prismen über Längskanten zu geschlossenen Ln(2)₄O₁₆-Gruppen verbunden sind, die ein gemeinsames O²⁻-Ion jeweils als überkappenden siebten Koordinationspartner nutzen. Exakt die gleiche ringförmige Vernetzung von vier LnO₆-Prismen wurde im BaZnNd₂O₅-Typ beobachtet.

 $TABELLE \ 1. \ Me \\ Ba_5 \\ Mn_4 \\ Sm_8 \\ O_{21} \ und \ (II) \\ Ba_5 \\ Mn_4 \\ Ho_8 \\ O_{21} \ mit \ Standard abweich ungen in \ Klammern$

	(I)	(II)		
Gitterkonstanten (Å)	a = 14,0911(40) c = 5,8329(28)	a = 13,8507(14) c = 5,7452(9)		
Zellvolumen (Å ³) Auslöschungsbedingungen	1158,2 hkl: h+k+l=2n hk0: h+k=2n 00l: l=2n	1102,2		
Raumgruppe	$C_{4h}^{5} - 14/m$ (Nr. 87)			
Zahl der Formeleinheiten	Z=2			
Diffraktometer	Siemens AED 2	Philips PW 1100 modifiziert von Stoe		
Strahlung/Monochromator 2Θ-Bereich Schrittweite Zeit/Schritt (s) Meßmodus	Mo Kα/Graphit 5°-70° 0,04° 1,5-4,0 Background-peak-background	Mo Kα/Graphit		
Korrekturen	Untergrund, Polarisations- und Lorentzfaktor + empirische Absorptionskorrektur [19]	+ DIFABS [20]		
Anzahl der gemessenen Reflexe	1667	1153		
Anzahl der berücksichtigten Reflexe	710 $(F_{o} > 3\sigma(F_{o}))$	906 $(F_o > 3\sigma(F_o))$		
Anzahl der verfeinerten Parameter	26	26		
Gütefaktor	R = 0.057 $R_{w} = 0.048$ $w = 0.6777/\sigma^{2}(F)$ $R_{w} = \sum w^{1/2} (F_{o} - F_{c}) / \sum w^{1/2} F_{o} $	R=0,078		

Atom	Lage	x	у	Z	B (Å ²)
(I)					
Sm(1)	(8h)	0,2486(1)	0,1682(1)	0,0	0,48(3)
Sm(2)	(8h)	0,4109(1)	0,3573(1)	0,0	0,52(3)
Ba(1)	(2a)	0,0	0,0	0,0	0,64(7)
Ba(2)	(8h)	0,5322(2)	0,1375(2)	0,0	0,68(4)
Mn	(8h)	0,0409(4)	0,2508(4)	0,0	0,62(8)
O(1)	(2b)	0,0	0,0	0,5	1,12(91)
O(2)	(8h)	0,625(2)	0,968(2)	0,0	1,13(45)
O(3)	(16i)	0,680(1)	0,548(1)	0,742(4)	0,76(28)
O(4)	(16i)	0,353(1)	0,240(1)	0,253(4)	0,64(27)
(II)					
Ho(1)	(8h)	0,2486(2)	0,1695(2)	0,0	0,70(4)
Ho(2)	(8h)	0,4116(2)	0,3581(2)	0,0	0,69(3)
Ba(1)	(2a)	0,0	0,0	0,0	0,81(8)
Ba(2)	(8h)	0,5343(2)	0,1394(2)	0,0	0,97(5)
Mn	(8h)	0,0395(6)	0,2479(6)	0,0	0,73(10)
O(1)	(2b)	0,0	0,0	0,5	1,0(10)
O(2)	(8h)	0,625(4)	0,973(4)	0,0	1,87(73)
O(3)	(16i)	0,681(2)	0,552(2)	0,749(5)	0,91(35)
O(4)	(16i)	0,351(2)	0,243(2)	0,248(5)	0,74(33)

TABELLE 2. Parameter für (I) $Ba_5Mn_4Sm_8O_{21}$ und (II) $Ba_5Mn_4Ho_8O_{21}$ mit Standardabweichungen in Klammern. In der Raumgruppe C_{4h}^{5} -I4/m sind folgende Punktlagen besetzt

TABELLE 3. Interatomare Abstände (Å) für (I) Ba₅Mn₄Sm₈O₂₁ und (II) Ba₅Mn₄Ho₈O₂₁ mit Standardabweichungen in Klammern

(I)					
Sm(1)–O(4)	2,316(18) 2.408(18)	$(2\times)$ $(2\times)$	Sm(2)–O(4) Sm(2)–O(1)	2,361(18) 2,371(2)	(2×)
Sm(1)-O(3) Sm(1)-O(2)	2,407(18) 2,618(28)	(2×)	Sm(2)–O(3)	2,385(18) 2,505(18)	(2×) (2×)
Ba(1)-O(1) Ba(1)-O(3)	2,916(1) 2,981(18)	(2×) (8×)	Ba(2)–O(2)	2,668(28) 2,723(28)	
				2,922(2)	(2×)
			Ba(2) = O(3) Ba(2) = O(4)	2,988(18)	$(2\times)$
			Ba(2)=O(4)	3,266(17)	$(2\times)$ $(2\times)$
MnO(2)	2,029(29)				
Mn - O(4)	2,080(19)	$(2\times)$			
Mn-O(3)	2,135(19)	(2×)			
(II)					
Ho(1)-O(4)	2,254(27)	(2×)	Ho(2)–O(3)	2,297(28)	(2×)
II (1) O(2)	2,338(26)	$(2\times)$	$H_{0}(2) - O(4)$	2,297(27)	(2×)
$H_0(1)=O(3)$ $H_0(1)=O(2)$	2,361(28)	(2×)	$H_0(2) = O(1)$ $H_0(2) = O(3)$	2,316(2) 2,481(28)	$(2\times)$
$B_{0}(1) O(1)$	2,050(55)	$(2\times)$	$B_{0}(2) O(3)$	2,401(20)	(2^)
Ba(1) = O(1) Ba(1) = O(3)	2,975(27)	$(2\times)$ $(8\times)$	Ba(2) = O(2)	2,023(33)	
(-) -(-)	-,,, (-,)	(0/1)		2,881(4)	(2×)
			Ba(2)–O(3)	2,886(28)	(2×)
			Ba(2)-O(4)	3,236(26)	(2×)
				3,246(26)	(2×)
Mn-O(2)	1,987(53)				
Mn = O(4) Mn = O(3)	2,101(27) 2.124(29)	$(2\times)$			

Abb. 1. Koordinationspolyeder um Ba(1) (schraffiert) und Ln(2) (offene trigonale Prismen) in Ba₅Mn₄Ln₈O₂₁ (Ln \equiv Sm, Ho). Leere Kugel, O²⁻; Kugel mit Segment, Ln³⁺.

Parallelen dieser Art zeigen auch die Koordinationspolyeder um Ba²⁺. In den hier untersuchten Substanzen Ba₅Mn₄Sm₈O₂₁ und Ba₅Mn₄Ho₈O₂₁ sind die Ba(1)-Lagen durch 10 O²⁻ koordiniert. Mit den meisten Stoffen der Formel BaMLn₂O₅ (M = Ni, Pt, Pd, Co) haben sie die überkappten würfelförmigen Polyeder gemeinsam, die in Abb. 1 schraffiert hervorgehoben sind. Die Unterschiede zwischen beiden Stoffgruppen liegen auch hier in der Art der Verknüpfung. Sie erfolgt in Ba₅Mn₄Sm₈O₂₁ und Ba₅Mn₄Ho₈O₂₁ zum Beispiel zu eindimensionalen voneinander isolierten Ketten, die ebenfalls in Abb. 1 zu erkennen sind.

In den Oxiden der Zusammensetzung BaMLn₂O₅ konnten beispielsweise die von der Würfelgestalt abweichenden Polyeder um Ba²⁺ im Kupfertyp (Ba-CuLn₂O₅) durch Aufweitung einer nicht überkappten Würfelfläche beschrieben werden. Der kürzlich für die großen Lanthanoidionen aufgeklärte Zinktyp (Ba-ZnNd₂O₅) [8, 12, 13] zeigt Ba²⁺ in einem Polyeder, welches durch Drehung der zwei überkappten Würfelflächen um 45° erhalten werden kann. In den hier untersuchten Stoffen Ba5Mn4Sm8O21 und Ba5Mn4-Ho₈O₂₁ ist die Koordinationssphäre um Ba(2) ebenfalls durch eine formale Änderung der doppelt überkappten Würfel von Abb. 1 abzuleiten. Hierzu wird eine längs [001] orientierte Würfelkante um 90° gedreht, wodurch die überkappten quadratischen Flächen in pentagonale Pyramiden übergehen, die eine gemeinsame Kante aufweisen. Das resultierende BaO10-Polyeder und dessen im Kristallverband vorliegende Verknüpfung zeigt Abb. 2. Durch Kanten- und Flächenverknüpfung von Ba(2)O₁₀-Polyedern entstehen längs [001] eindimensionale Polyederstränge, die in die offenen Bereiche von Abb. 1 eingelagert sind.

Abb. 2. Verknüpfung der Ba(2) O_{10} -Polyeder entlang [001] zu eindimensionalen Strängen. Kleine offene Kugel, O^{2-} .

Die hier diskutierten Parallelen und Unterschiede des Ba₅Mn₄Nd₈O₂₁-Typs zu Substanzen der Zusammensetzung BaMLn₂O₅ zeigen, daß die erwähnte geringfügige Änderung der chemischen Zusammensetzung bezüglich der Koordination von Ba(2) zu einer tiefgreifenden Veränderung der Koordinationssphäre führt, obwohl die Gesamtzahl aller O²⁻-Nachbarn mit C.N. = 10 erhalten bleibt. Das in Abb. 2 gezeigte BaO₁₀-Polyeder ist bisher einmalig und hat nur im KBa₃Ca₄Cu₃V₇O₂₈-Typ [16] in modifizierter Form eine Parallele.

Alle Rechnungen wurden auf der elektronischen Rechenanlage VAX 8550 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifizierten ORTEP-Programm [17, 18] erstellt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Zusammenarbeit m.b.H., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56342, des Autors und des Zeitschriftenzitats angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Literatur

- 1 Hk. Müller-Buschbaum und E. Klüver, Z. Anorg. Allg. Chem., 612 (1992) 21.
- 2 J. A. Campá, E. Gutierrez-Puebla, M. A. Monge, I. Rasines und C. Ruiz Valero, J. Solid State Chem., 95 (1991) 360.
- 3 Hk. Müller-Buschbaum und E. Klüver, Z. Anorg. Allg. Chem., 612 (1992) 14.
- 4 C. Michel und B. Raveau, J. Solid State Chem., 43 (1982) 73.
- 5 S. Schiffler und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 540-541 (1986) 243.
- 6 H. Mevs und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 573 (1989) 128.
- 7 S. Schiffler und Hk. Müller-Buschbaum, Monatsh. Chem., 118 (1987) 741.
- 8 H. Mevs und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 574 (1989) 172.
- 9 S. Möhr und Hk. Müller-Buschbaum, J. Less-Common Met., 170 (1991) 127.

- 10 C. Michel und B. Raveau, J. Solid State Chem., 49 (1983) 150.
- 11 S. Schiffler und Hk. Müller-Buschbaum, Monatsh. Chem., 117 (1986) 465.
- 12 S. Schiffler und Hk. Müller-Buschbaum, J. Less-Common Met., 128 (1987) 117.
- 13 C. Michel, L. Er-Rakho und B. Raveau, J. Solid State Chem., 42 (1982) 176.
- 14 P. Sonne und Hk. Müller-Buschbaum, J. Less-Common Met., 167 (1990) 193.
- 15 G. M. Sheldrick, Program for Crystal Structure Determination, University of Cambridge, 1976.
- 16 M. von Postel und Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., im Druck.
- 17 C. K. Johnson, *Rep. ORNL-3794*, 1965 (Oak Ridge National Laboratory, TN).
- 18 K.-B. Plötz, Dissertation, Universität Kiel, 1982.
- 19 Fa. Stoe & Cie, EMPIR PSI-Scan Programm, Darmstadt, 1987.
- 20 N. Walker und D. Stuart, Empirical Absorption Program, Acta Crystallogr. A, 39 (1983) 158.